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In this paper, we present the first results of a measurement campaign done in the Barcelona 
CIEM wave flume from October 2013 to January 2014. The aim of the experiments was to 
improve our understanding of sediment transport processes in the near-shore region. In 
particular, we focused on the effects of (1) wave breaking and (2) wave irregularity on net 
sediment transport rates and sediment transport processes. High-resolution measurements were 
obtained using advanced instrumentation, deployed from a custom-built measuring frame that 
was both horizontally and vertically mobile. These instruments provide detailed insights in the 
vertical distributions of sediment fluxes. Preliminary results from the breaking-wave 
experiments show an onshore transport of sediment prior to breaking, likely to be dominated 
by wave-nonlinearity effects, and an offshore sediment flux shoreward of breaking, where the 
sediment fluxes are undertow-dominated.  

 
1. INTRODUCTION 
The complex interactions between hydrodynamics and sediment transport processes in the near-shore 
region are not yet understood at a level of detail required for accurate model predictions. This holds in 
particular for the effects of wave irregularity and wave breaking, and is primarily caused by a lack of 
detailed experimental hydrodynamic and sediment flux data. Previous breaking-wave experiments had 
their focus on hydrodynamics and turbulence distributions (e.g. Boers, 2005), in some cases in 
combination with bed morphology and suspended sediment transport (Roelvink and Reniers, 1995; 
Maddux et al., 2006), while detailed measurements under irregular waves are somewhat limited, 
especially at large scale (O'Hara Murray et al., 2012). Our research aim is to uncover further the 
physical processes that drive sand transport under different types of regular breaking and irregular 
non-breaking waves. This is achieved through a new series of mobile-bed wave flume experiments 
using advanced measuring instruments within the EU Hydralab IV project SandT-Pro. Compared to 
earlier experiments, the new experiments yield greater detail and insights into the bottom boundary 
layer processes and near-bed sediment transport fluxes. 
Two types of experiment were conducted, each with its own research aims: (i) Experiments involving 
regular breaking (RB) waves, focusing on the effects of wave breaking on near-bed sediment 
dynamics, including the influence of additional stirring caused by breaking on the (especially near-
bed) sediment fluxes, and the effects of horizontal advection processes of turbulence and suspended 
sediment; (ii) Experiments with irregular non-breaking (INB) waves, focusing on turbulence and 
sediment pumping under wave groups, the effect of wave sequence on the wave-related sediment flux 
in the suspension layer and the comparison of net transport rates for “equivalent” regular and irregular 
wave conditions. 
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2.  DESCRIPTION OF EXPERIMENTS 
2.1  BED SET-UP AND WAVE CONDITIONS  

The experiments were done at the CIEM flume of UPC, Barcelona, from October 2013 to January 
2014. The initial bed consists of an offshore linear slope (1:10 during most experiments), followed by 
a long horizontal test section (1.35 m height) and a fixed parabolic beach (Figure 1). The bed material 
consists of medium-grained sand with a D50 of 0.25 mm.  

 

 

Figure 1: Experimental set-up. 

 
An overview of both the RB and the INB wave conditions is given in Table 1. In general, wave 
conditions were selected to have high near-bed orbital velocities. The RB wave conditions were 
designed such that waves would break at the beginning of the horizontal test section. For these 
experiments, the high near-bed velocities induced bedload transport in the sheet-flow regime in the 
zone before breaking. Regular waves were used in order to obtain good convergence of measured 
intra-wave sediment transport processes through ensemble-averaging. The characteristics of the 
breaking wave were varied by using various wave heights and water depths at the wave paddle (d0) 
and by changing the initial slope, resulting in the two conditions RB1 and RB2.  

 

Table 1: Overview wave conditions. d0 is the water depth at the wave paddle; T is the period of the 
short wave; H  is the wave height with subscripts rms, s and max representing the root-mean-squared, 
significant, and maximum wave height of the wave group respectively; Tg is the period of the group; 

and n is the number of short waves per group. 

Regular Breaking (RB) 

Run 
d0 
(m) 

Slope 
T  
(s) 

H 
(m) 

# 
runs 

Duration 
runs (min) 

Remarks 

RB1 2.55 1:10 4.0 0.85 22 15 to 20 Plunging 
RB2 2.65 1:20 4.0 0.95 26 20 to 30 Weakly plunging 

Irregular Non-Breaking (INB), grouped waves 

Run 
d0 
(m) 

Slope
T 
(s) 

Hrms 
(m) 

Hs 
(m) 

Hmax 
(m) 

Tg  
(s) 

n Remarks 

IGB1 2.65 1:10 4.4 0.49 0.69 0.69 41.8 10 Bichromatic, fully modulated 
IGB2 2.65 1:10 4.4 0.49 0.69 0.69 28.6 7 Bichromatic, fully modulated 
IGB3 2.65 1:10 4.4 0.49 0.69 0.62 41.8 10 Bichromatic, partially modulated 
IGM1 2.65 1:10 4.4 0.49 0.69 0.79 44.0 10 Waxing, fully modulated 
IGM2 2.65 1:10 4.4 0.49 0.69 0.79 44.0 10 Waning, fully modulated 

Irregular Non-Breaking (INB), monochromatic reference cases 

Run 
d0 
(m) 

Slope 
T  
(s) 

H 
(m) 

# 
runs 

Duration 
runs (min) 

Remarks 

IM1 2.65 1:20 4.4 0.49 3 22 H equal to Hrms of groups 
IM2 2.65 1:20 4.4 0.69 3 22 H equal to Hs of groups 
IM3 2.65 1:20 4.4 0.79 2 22 H equal to Hmax of IGM groups 
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For the INB experiments, two type of non-breaking wave conditions were realized: regular 
(monochromatic) waves and bichromatic wave groups. The wave groups were generated by 
modulating a regular (short) wave time-series as follows: 
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in which a is the amplitude of the short wave, T is the short wave period (T = 4.4 s) and A(t) is the 
modulating wave envelope. In its simplest form A(t) consists of a sine wave modulation as follows:  
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where M is the amplitude modulation coefficient (M = 0 is no modulation, M = 1 is full modulation, 
resulting in H = 4a), Tg is the period of the wave group (Tg = nT with n the number of short waves in a 
group). Conditions IGB1 and IGB2 are based on Eq. (1.1) and (1.2) with M = 0.9, the only difference 
being the number of waves in the group n = 7 (IGB1) and n = 10 (IGB2). For the other two group 
conditions (IGM1 and IGM2) a smooth sawtooth shaped modulation function is used based on the 
Generalised Sawtooth (GSAW) function of Malarkey and Davies (2012): 
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Here, b = 2β-1 and β is a factor that describes the degree of forward- or backward-leaning 
(“sawtoothiness”), i.e. β > 0.5 leads to a forward-leaning sawtooth shape,  β < 0.5 leads to a backward-
leaning sawtooth shape and β = 0.5 is a purely sinusoidal function, similar to Eq. (1.2). The target 
‘waxing’ and ‘waning’ wave groups IGM1 and IGM2, based on Eq. (1.3), are shown in Figure 2. 
 

 

Figure 2: Target wave groups conditions IGM1 (waxing, left) and IGM2 (waning, right). 

 
2.2   INSTRUMENTATION AND PROCEDURES 

Detailed process measurements were obtained using a vertical array of state-of-the-art instrumentation, 
deployed from a mobile measuring frame that was custom-built at the University of Twente. This 
frame consists of a steel construction of slim rods, mounted to the bottom of a horizontally-mobile 
carriage located above the flume (Figure 1). The frame can be vertically repositioned with O(mm) 
accuracy using a spindle. The frame was designed such that it was as stiff as possible, while at the 
same time flow perturbations were tried to be minimized.  
A range of various measuring instruments for sediment concentrations and flow velocities was 
mounted to the mobile frame instruments (Figure 3). Water velocities (two components) were sampled 
simultaneously using a High-Resolution Acoustic Concentration and Velocity Profiler (HR-ACVP). 
This prototype system is currently developed within the project Hydralab IV-WISE on the basis of the 
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ACVP technology described in Hurther et al. (2011). In addition, a Nortek Vectrino Profiler was used 
to measure near-bed velocities and turbulence in three components. Near-bed sediment concentrations 
were measured using the HR-ACVP (vertical profile) and an Optical Backscatter Sensor (OBS; point 
measurement near the bed). Higher in the vertical, velocity and concentration profiles were measured 
using ADVs, OBSs and an AQUAscat Acoustic Backscatter Sensor (ABS). The concentration 
measurements are calibrated and verified with suction measurements of suspended sediment, obtained 
with a 7-nozzle Transverse Suction System (TSS). The suction samples were sieved and dry-weighted 
to yield time-averaged concentrations and, later, sampled for laser-diffraction-based grain-size 
analysis. 
Moreover, two CCM+ (Conductivity Concentration Measurement) tanks (Van der Zanden et al., 2013) 
for sheet flow sediment concentration and particle velocity measurements were installed in the sand 
bed, below two additional HR-ACVP systems. The latter were mounted to two separate fixed wall 
frames above the CCM+ tanks. Water surface elevation was measured along the flume with 13 
resistive wave gauges and, near the breaker location, with 9 pore pressure transducers at 1 m intervals. 
Total net transport rates are obtained from mass conservation using pre- and post-test bed profiles 
measured with acoustic bed profilers. 
During the RB experiments, process measurements were obtained at various cross-shore positions 
while the bed profile evolved in order to measure the various sand transport processes driven by the 
breaking waves. For the INB cases, measurements were concentrated at one cross-shore position in the 
middle of the horizontal test section as flow above the test section was assumed uniform. 

 

 

Figure 3: Instrumental set-up on the mobile frame. 
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3.   RESULTS AND DISCUSSION (BREAKING WAVES) 

In the present paper, preliminary results of the measured sand transport rates and processes for 
condition RB1 (regular breaking waves) are presented and discussed. We will first present the 
morphologic evolution of the bed and the net sediment transport rates, and will later show a few 
detailed measurements that help explain the morphodynamics.  
 
3.1   MORPHOLOGIC EVOLUTION AND SAND TRANSPORT 

The evolution of the bed profile is shown in Figure 4 (upper graph). From left to right we can 
distinguish in the initial profile (red line) the 1:10 bottom slope (x=34 to 47 m), followed by the 
horizontal test section, and finally the beginning of the fixed parabolic beach (indicated by the bump at 
x=68.5 m). The plot includes the position of the breaking point, defined here as the cross-shore 
location with the largest reduction in wave heights.  
After the start of the experiment, the continuous breaking of the regular waves promoted the growth of 
a breaker bar and trough. After approximately 4.5 hours of wave action, the breaker bar and trough are 
clearly visible in the measured profile (black line). Further observations reveal large bedforms at the 
inclined part of the profile (x<50 m), followed by a flat bed in the shoaling zone until the breaking 
point (x=50 to 56 m). The latter suggests that bedload transport is in the sheet-flow regime here. 
Moving from the breaking point towards the surf zone a gradual transformation of a flat bed (x=56 to 
58 m) to large quasi-2D crescentic bedforms (x=58 to 61 m) can be seen, followed by 3D ripples in the 
surf zone (x=61 to 68 m).  
Net time-averaged sediment transport rates for the 275 minutes were obtained by applying a mass-
conservation method as described for instance by Baldock et al. (2010). Results, shown in Figure 4  
(bottom graph), reveal an onshore (positive) sediment flux before breaking and an offshore (negative) 
flux shoreward of breaking, which together contribute to building the breaker bar. Around the 
breaking point, the transport gradient is large which underlines the importance of breaking-induced 
sediment transport processes for morphologic evolution in the near-shore region.  
 

 
Figure 4: Profile development (upper) and net transport rates (lower) for RB1 experiment (after 275 

minutes). Green vertical bars indicate positions of fixed frames. 
 

3.2   NEAR-BED VELOCITY AND SEDIMENT FLUXES 

More detailed analysis was done by studying the velocities and sediment fluxes measured at various 
cross-shore locations. Near-bed wave-averaged velocity profiles, measured at two locations by the 
HR-ACVP systems, are shown in Figure 5. The cross-shore positions are indicated by the green 
vertical bars in Figure 4.  
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Figure 5: Wave-averaged results of HR-ACVP velocities, RB1 case. Left: fixed frame at location 1 in 
Figure 4 (pre-breaking, run 3). Right: mobile frame at location 2 in Figure 4 (post-breaking, run 20). 

 
The plots in Figure 5 show well-known features such as the velocity overshoot, which can be used to 
define the thickness of the wave bottom boundary layer. At location 1, near-bed velocities during the 
wave crest phase exceed 1 m/s causing bedload sediment transport in the sheet-flow regime (Figure 5 
left). During the wave trough phase, velocities are somewhat lower. Due to wave energy dissipation as 
a result of wave breaking, the orbital velocity amplitude is reduced strongly at location 2 and the time-
dependent flow is offshore directed during the complete wave cycle because of the presence of a 
strong undertow (Figure 5 right). The appearance of bedforms in the surf zone can now also be well 
explained, since velocities are not high enough to generate sheet-flow sediment transport. 
 

Figure 6: Phase-averaged results of HR-ACVP measurements. Run 6, at x=51 m (pre-breaking). Upper 
plot: free-stream velocity at z=0.085 m from bed; middle plot: concentrations and velocity vector 

field; lower plot: sediment fluxes and velocity vector field. The time on the horizontal axis is 
normalized by the wave period T of 4.0 s. 
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The HR-ACVP can also be used to study sediment concentrations, which in combination with the 
simultaneously measured velocities, result directly in the near-bed sediment fluxes. Figure 6 shows the 
phase-averaged concentrations and fluxes in the shoaling zone (x=52 m). During the crest phase, we 
indeed see transport similar to known sheet-flow layer behavior. The bed-level decreases as sediment 
is being picked up and returns to its original state near flow reversal. Although the data still have to be 
validated further, these preliminary results indicate that the HR-ACVP is able to penetrate quite far 
into the sheet-flow layer. It also becomes evident that the majority of the sediment transport occurs in 
the thin sheet-flow layer (<2 cm thickness), which is in line with previous research for oscillatory 
flows (e.g. Ribberink and Al-Salem, 1995; Schretlen, 2012). The trough phase shows similar 
behaviour, although the thickness of the sheet flow  layer is much smaller as a result of the lower 
velocities under the wave trough. The transport during the crest phase, in the thicker sheet-flow layer, 
exceeds the transport in the trough phase. Hence, net transport at this location is onshore, which agrees 
with our observations from Figure 4. 
 

4.  OUTLOOK 

Upcoming analyses of the data presented herein will include calculations of sediment transport fluxes 
using the HR-ACVPs together with the CCM+ tanks (near-bed) and the combination of ABS/ADVs 
(higher in vertical). Our aim is to distinguish the various sediment transport components (current, 
wave, turbulent), and study how these are affected by wave breaking (RB cases) and shape of the wave 
group (INB cases). Turbulence estimations using the HR-ACVP and Vectrino Profiler will help us to 
understand the sediment transport processes we observe. 
Moreover, additional experiments in the CIEM wave flume are scheduled as part of the joint 
UK/Dutch collaboration project SINBAD. A first series will involve additional medium-sand runs, 
with the aim to study the effects of wave breaking on cross-shore flow non-uniformities and sediment 
transport rates for one breaking-wave condition in more detail. Subsequently, we will examine 
hydrodynamics and boundary-layer flow in more detail by a series of rigid-bed experiments, which 
allows the use of optic measuring instrumentation (PIV, LDA).  
The results of the experiments will be used to improve practical sand transport models (e.g. van Rijn, 
2007; van der A et al., 2013) that are used in morphodynamic models.  
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