Modelling channel stability in experimental river systems

UNIVERSITY OF HULL

Bas Bodewes, Wietse van de Lageweg, Stuart J. McLelland, Daniel R. Parsons

email: b.bodewes@2016.hull.ac.uk twitter: @basbodewes

Background

- Climate change suggests increases in the magnitude and frequency of rainfall events, with greater likelihood of fluvial flooding.
- > The nature of fluvial morphological response is uncertain and can best be explored through modelling.
- Physical modelling has so far primarily examined single flood events, whereas a sequence of flood events can
- enhance morphological change and overcome channel stability thresholds in order to shift to a different system. > Channel stability is heavily dependent on vegetation, and, when vegetation grows channel stability changes over
- time. An increase in flood frequency can reduce vegetation recovery opportunities. Bank erosion experiments have the potential to quantify the effects of surrogate vegetation and EPS in physical fluvial experiments.
- Surrogate vegetation growing is relative time consuming and a limiting factor in physical modelling.
- > Extracellular Polymeric Substances (EPS) have been shown to enhance cohesion of sediment.

Aims

- Understand behaviour of surrogate vegetation for flume experiments
- > Understand the influence of seed density and age of vegetation.
- Understand whether EPS is suitable to represent vegetation in regards to channel stability.

Interested in time lapse movies?

Methodology for bank erosion experiments

- 10 cm wide, 2 cm thick trapezoid block of sediment (fig 1)
- Constant water flow (470 l/h)
- 434 μm sediment (1 kg)
- 6 vegetation settings
- 9 different EPS settings
- 10 replicates of each setting

Two different **EPS** were used, Xanthan Gum and Carrageenan. EPS were dry-mixed with the sediment before being mixed with water.

mixture **EPS-sediment** was made in-situ, and experiments were started within 15 minutes.

Fig. 1: Schematic overview bank erosion experiments

sediment bed.

started within 1 hour.

Vegetation (Alfalfa, Medicago Sativa)

was grown under controlled conditions,

T = 18-20 °C, with natural sunlight lamp

in a separate basin with saturated

Unprepared seeds were manually

planted on saturated sediment. Samples

were moved to flume after 7, 10 or 13

days and erosion experiments were

Fig. 2: Growing basin for vegetation.

Image processing in Matlab

- > 30s time lapse with using GoPro camera from above.
- > Convert to rectified greyscale image.
- > Use threshold to convert to binary image.
- > Use interpolation to smoothen image (fig 4).
- > Determine boundary of the sediment block.
- Compute block volume over time relative to fixed back wall (fig 3).

Fig. 3: Boundary line of sediment block over time and back wall (black).

Fig. 4: Intermediate products of image processing from greyscale image to boundary line of the sediment block.

EPS/Chemical Surrogates

Fig. 5: Averaged block volume over time for both EPS, Xanthan Gum (red) and Carrageenan (blue), for different dry weight percentages. Three bare sediment settings (black) as reference.

- > Both Xanthan Gum and Carrageenan increase cohesion.
- Xanthan Gum increases cohesion gradually.
- ➤ Carrageenan increases cohesion suddenly, (in range 0.050 0.100). > EPS very sensitive to time.

Variability between runs is

greater for vegetated runs

> Both EPS and vegetation can

compared to EPS runs. Variability

is lowest in bare sediment runs.

Comparison

(fig 11).

> High percentages of EPS generates more irregular shaped banks as well as more undercutting.

Fig. 6: Dried, solid block of sediment with high quantity EPS (XG).

Surrogate vegetation

Fig. 7: Averaged block volume over time with alfalfa vegetation, for low (blue) and high (red) seed density for different ages of vegetation. Three bare sediment settings (black) as reference.

Table 1:

Overview

replicates

settings and

experimental

runs with EPS.

- Increased seed density increases cohesion.
- More mature vegetation increases cohesion.
- Root structure increases over time (fig 9).
- Eroded vegetation deposits at bank toe and shelters bank from further erosion.

Added dry

weight % EPS

0.0125

0.0250

0.0500

0.0750

0.1000

Fig. 8: Eroded vegetation generating protection for downstream bank.

Xanthan

Gum (XG)

10 x

10 x

10 x

10 x

Carrageenan

(CG)

10 x

10 x

10 x

10 x

10 x

Fig. 9: Different root structures for 7, 10 and 13 day old alfalfa vegetation.

Age

7 days

10 days

13 days

vegetation.

make the block un-erodible. Fig. 10: A time step in experiment with XG (left) and alfalfa (right).

Fig. 11: Spread of different runs for bare (black), EPS (red) and vegetation (blue).

- Vegetation is both able to increase cohesion and eroded plants can protect the bank from the flow, EPS is only able to reproduce the effect of cohesion.
- Vegetation causes ponding of water upstream when vegetation is deposited further downstream.
- Erosion with vegetated blocks slows down over time, similar to high densities of CG, but not to XG for which the rate of erosion is less variable.

Future Work

- > Braided river experiments in 10 m long flume.
- Vegetation allowed to establish and interact with the braided river system.
- Replicate vegetation effects with EPS.
- A range of flood event sequences will be applied to explore the relationship between flood frequency and vegetation establishment and recovery, and consequences for braided river development.

1 seed /

10 x

10 x

6 x

Table 2: Overview settings and

replicates experimental runs with

2 seed /

 cm^2

10 x

10 x

5 x

Fig. 12: Screen capture of earlier experiments on braided rivers in Total Environment Simulator

Conclusion

- > Vegetation and EPS are both successful in increasing cohesion of the sediment.
- > Xanthan Gum increase cohesion gradually, Carrageenan increases cohesion more abruptly.
- > Vegetation age is more effective then seed density in reducing erosion rates.
- > Vegetation reduces erosion through both cohesion and by eroded plants protecting the bank from further erosion.
- > Xanthan Gum is more controllable, but the behaviour of Carrageenan is more similar to natural vegetation.

Acknowledgements

Funding for this research has been provided by Hydralab+ and University of Hull. Appreciation for support of the catastrophic flow cluster as well as Mike Dennett, Kim Rosewell, Brendan Murphy a.o. for support in the lab.