Outlooks on acoustics and the study of sediment dynamics

Peter D. Thorne: National Oceanography Centre, UK

David Hurther: Laboratory of Geophysical and Industrial Flows (LEGI), France

Have a look at a number of ongoing developments of acoustic instrumentation for measuring sediment processes

Some results from a few studies and recent deployments

Provide measurements to advance understanding of nearbed sediment transport dynamics

Keynote presentation on Hydralab+ COMPLEX studies at the Third conference of Sea-level and coastal change research group SLaCC of the QRA, in Liverpool, UK, 6 - 8 September 2017.

Abstract published in the conference programme P1

Developments have been carried out through EU funding as part of Hydralab programs Provide access to large scale facilities, support staff and instrument development

Scientific aim Measure fundamental sediment processes

Simultaneous, co-located measurements of the dynamic interacting sediment triad

Concept

Wouldn't it be nice if we could just send a pulse of sound into the water and measure what we need.

Why acoustics

- →Non intrusive
- → High spatial-temporal resolution
- **→Provides profiles**
- →Suspended sediment size & conc
- →3 axis velocity
- →bedforms
- →bed load

Information amplitude & phase & frequency

Acoustic Vision a couple of decades back

Non-intrusive, co-located, simultaneous, high spatial-temporal resolution measurement of the sediment triad

- A- Multi-frequency Acoustic Backscatter System suspended particle size and concentration
- B Acoustic Coherent Velocity Profiler 3-axis intra-wave & turbulent velocities
- C Acoustic Ripple Profiler transects of the bed profile
- D High Resolution Sector Scanner images of the micro-topography
- E Acoustic Suspended Sediment Imager Look at suspended sediment structures

Idea was to develop such instruments and look at the dynamic interaction between the bed, flow and mobile sediments

Develop instruments to look at boundary layer sediment transport processes

Look at sediment transport processes under waves over rippled sandy beds

Impact of ripple slope on entrainment processes

Influence of wave asymmetry

Relative quantities of suspended and bedload

Direction of bedload and suspended load transport

Typical experiment in the Barcelona Flume: 100 m long, 5 m deep, 3 m wide

Regular waves H=0.3-0.5 m T=4.5 s over 2D-bedforms

Instruments

3D-ARP – 3 Dimensional Acoustic Ripple Profiler

1. BASSI – Bedform And Suspended Sediment Imager

Operates at 0.75, 1.25, 2.5 MHz
Vertical profile 1m
Vertical resolution 5 mm
Horizontal resolution 3.3 cm
Image rate 10Hz
15 transducer/array
4 arrays variable configurations

Time varying intra-wave intra-ripple suspension processes

Images 0.5s apart

Bedforms, ripple migration and bedload

Extract migration rate & bedload transport

Nice 2D-Ripples?

2. 3D-ARP – 3 Dimensional Acoustic Ripple Profiler

Operates at 1.1 MHz
90dB dynamic range
Variable sector and range
Variable azimuth rotation, 0.9° - 9°
Variable swath 0.9° - 9°
Variable digitisation, 1-100 us
Pitch and roll sensors

2DHV suspension, 3D- beforms, ripple migration bed load

3D-ARP measurement of the bed – was expecting **2D** ripples

Ripple dimensions independent of orientation -3D bedforms

3D-ripples!

HR-ACVP - High Resolution Acoustic Concentration and Velocity Profiler

Measurements of flow, suspended concentration and sediment flux under waves over a ripple bed

Averaged velocity over a ripple and streaming vectors

Close to the bed flow onshore while above offshore

Bedload, suspended load and total load

Net suspended load offshore

Net bedload onshore

Total load offshore

Wave-driven sheet flows in the wave breaking region

G. Fromant, J. van der Zanden

Current-driven Sheet Flows

J. Chauchat, G. Fromant, T. Revil-Baudard, R. Myeras, J. Puleo

Bedload measurements: comparison of ACVP & CCProfiler measurements

- Good agreement between CCP probes and ACVP
- CCP do not measure concentrations below $\Phi < 0.01$

Secured major funding at least in part due to acoustic systems

COHBED - NERC
Study ripple formation over physically and biologically cohesive beds

BLUEcoast – NERC
Physical and biological dynamic coastal processes and their role in coastal recovery

INSTRON - EPSRC Model tidal stream turbine studies

Hydralab – EU
Water interface sediment experiment

Conclusions

BASSI

2DHV images of suspended conc/size
Intra-wave intra-ripple suspended sediments
Transects of bedforms
Ripple dimensions
Ripple migration can be measured

3D-ARP

Individual transects of the bed
3D images of the bedforms
Ripple dimensions
Ripple migration
Suspended sediment can be measured

HR-ACVP

particle size & concentration velocity profiling & bed interface tracking Suspended sediments & bedload fluxes Bedform measurements on mobile beds

